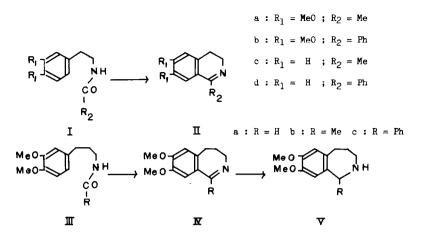
Tetrahedron Letters No.35, pp. 2419-2422, 1964. Pergamon Press Ltd. Printed in Great Britain.

BISCHLER-NAPIERALSKI REACTION BY MEANS OF POLYPHOSPHATE ESTERS AND SYNTHESIS OF 5H-2-BENZAZEPINE DERIVATIVES^{*,**}

Yuichi Kanaoka, Eisuke Sato, Osamu Yonemitsu and Yoshio Ban Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Received 7 July 1964)

The recent report from our laboratory pointed out that polyphosphate esters (PPE) may be useful as an agent for many condensation reactions.¹ This communication describes the Bischler-Napieralski reaction by means of PPE in the synthesis of some dihydroisoquinolines together with the extensive application of this reaction in the synthesis of some 5H-2-benzazepine derivatives which have been rarely encountered in literatures as synthesized by cyclization of this type.^{2,3}


PPE was prepared from phosphorous pentoxide and diethyl ether in chloroform solution and used <u>in situ</u>.^{1,4,5} Amides of phenethylamine derivatives (Ia-d) were heated with 5 parts of PPE to afford corresponding dihydroisoquinolines (IIa-d) as shown in the Table 1. Amides possessing benzene ring activated by substitution with methoxyl groups (Ia-b) were cyclized under extremely mild conditions. Unsubstituted amides (Ic-d) were also cyclized under moderate conditions in good yields. PPE is thus shown to be a very good agent for conventional Bischler-Napieralski reaction.^{6,7}

In a similar manner, amides of χ -(3,4-dimethoxyphenyl)-propylamine (IIIa-c)

2419

^{*} Presented at the 19th Annual Meeting of the Pharmaceutical Society of Japan, April, 1964, Tokyo.

^{**} Polyphosphate Esters as Synthetic Agent. Part II. Part I, ref. 1.

were cyclized to afford corresponding bases (IVa-c) as shown in the Table 1. Subsequent treatment of them with sodium borohydride gave reduced bases (Va-c). Infrared spectra of the bases (IVa-c) showed maxima at $1605 - 1630 \text{ cm}^{-1}$ range (C= N), which shifted to $1640 - 1660 \text{ cm}^{-1}$ range on salt formation. Ultraviolet spec-

Products	Bischler- Napie: Temp. (°c)*	ralski Reaction Time (hr.)	Yields (%)
IIa	in chloroform refl.	0.5	78
IIb	in chloroform refl.	0.5	85
IIc	120	1.5	82
IId	120	1	89
IVa	120	1.5	76
IVb	120	1	63
IVc	120	1	90**

Table	1.	

* bath temp.

** crude yield

trum patterns of them and their bathochromic change on protonation are described in the Table 2. These spectroscopic behaviors of the bases are definitely in

	Ultraviolet Spectra o: * Free Base			the Benzazeipines ** Protonated	
	mμ	log E	mµL	log £	
IVa	236	4.19	246	4.05	
	273	4.16	326	4.14	
	312	3.91	3 63	4.09	
IVb	263	3.78	301	3.77	
	297	3.68	346	3.81	
IVe	239	4.27	270	4.10	
	305	3.67	380	3.80	

Table 2.

* in ethanol

** in ethanol containing hydrochloric acid

parallel with those in their 6,7-dimethoxy-3,4-dihydroisoquinoline analogs⁸ and confirm the cyclized structures (IVa-c). NMR spectra of the bases (IV and V) indicated the presence of two isolated aromatic protons (3.15 - 3.83 C range, two singlets) also in good accord with the structural assignment. These results

Table 3.

Properties of Benzazepines*						
Compounds	Free Base	Picrate	Perchlorate	Methiodide		
IVa	165 - 166	197 - 198	234 (dec.)	182 - 185		
IVb	140 - 143 (b.p.3)	183 - 184	190 - 191	190 - 191		
IVc	oil	222 (dec.)	246 — 247 (dec.)	206 - 206.5 (dec.)		
Va	172 - 173	197 - 198				
Vъ	115 - 120 (b.p.3)	1 63 — 165				
Vc	114 - 115					

* m.p., uncorrected

demonstrate that PPE is a reagent of choice for the synthesis of 3,4-dihydro-5H-2-benzazepine derivatives by the extended Bischler-Napieralski reaction.

Phys.cal properties of 7,8-dimethoxy-3,4-dihydro-5H-2-benzazepines (IV), 7,8-dimethoxy-1,2,3,4-tetrahydro-5H-2-benzazepines (V) and the derivatives are listed in the Table 3. Satisfactory results were obtained for all new compounds on elemental analysis.

<u>Acknowledgement</u> We are grateful to Professor Em. S. Sugasawa for his valuable advice. This work was supported by Grant-in-Aid for Developmental Scientific Research from Ministry of Education of Japan and Grant (MH 08187-01) from the National Enstitutes of Health, United States Public Health Service, which are gratefully acknowledged.

References

- Y. Kanaoka, O. Yonemitsu, K. Tanizawa and Y. Ban, <u>Chem. Pharm. Bull. 12</u>, in press.
- 2. S. Uyeo, 19th IUPAC Absts. A. London, p. 12 (1963).
- 3. M. Tonita and S. Minami, <u>Yakugaku Zasshi</u> 83, 1022 (1963).
- 4. G. Schramm, H. Groetsch and W. Pollmann, Ang. Chem. Int. Edn. 1, 1 (1962).
- 5. W. Pollmann and G. Schramm, Biochim. Biophys. Acta 80, 1 (1964).
- 6. W. M. Whaley and T. T. Govindachari, Organic Reactions Vol. VI, p. 74 (1951).
- 7. H. R. Snyder and F. X. Werber, J. Am. Chem. Soc. 72, 2962 (1950).
- 8. Y. Ban, O. Yonemitsu and M. Terashima, Chem. Pharm. Bull. 8, 194 (1960).